An improved wilson - method and its computational stability 法及其算法穩(wěn)定性
New advances in research on some difference schemes in nonlinear computational stability 若干差分格式非線性計(jì)算穩(wěn)定性研究的新進(jìn)展
Problems on nonlinear computational stability of the difference schemes of evolution equations 發(fā)展方程差分格式的非線性計(jì)算穩(wěn)定性問題
The method can improve the computational stability and accelerate the calculation speed to some degree 5 、復(fù)雜背景下的目標(biāo)識(shí)別一直是人們關(guān)注的問題。
Computational stability of explicit difference schemes of forced dissipative nonlinear evolution equations 強(qiáng)迫耗散非線性發(fā)展方程顯式差分格式的計(jì)算穩(wěn)定性
Computational stability of the explicit difference schemes of the forced dissipative nonlinear evolution equations 強(qiáng)迫耗散非線性發(fā)展方程顯式差分格式的計(jì)算穩(wěn)定性
In another part , apagoge is used in this paper to tell us that not all the stability conditions deduced by the heuristic method are the necessary computational stability conditions , which should be given attention in their applications 在文章的另一部分,反證法的運(yùn)用表明了從啟示性方法推導(dǎo)來的穩(wěn)定性條件并非全都是必要條件,在應(yīng)用中應(yīng)引起注意。
The fourth - order explicit upwind - biased compact difference schemes are used in the spatial discretization of the nonlinear convection terms . these difference schemes can be used in all computational region including the boundary neighborhood , and can overcome the difficulty not adapting simultaneously in the boundary neighborhood for general three - dimensional fourth - order central difference schemes , and improve computational stability a nd resolution . the compact difference equations with high accuracy and resolution for solving the incompressible n - s equations and perturbation equations are composed of these compact difference schemes , and provides an effective numerical method for the investigations of the turbulent spots and coherent structures 文中發(fā)展了四階時(shí)間分裂法用于navier - stokes方程及其擾動(dòng)方程的時(shí)間離散;對分裂得出的關(guān)于壓力的poisson方程和關(guān)于速度的helmholtz方程,建立三維耦合四階緊致迎風(fēng)差分格式;這些格式適用于包括鄰近邊界點(diǎn)在內(nèi)的計(jì)算區(qū)域,克服了三維各自用四階中心差分格式離散不適用于邊界鄰域的困難,并提高了穩(wěn)定性和分辨率,用這些格式分別組成了數(shù)值求解navier - stokes方程及其擾動(dòng)方程的高精度、高分辨率的緊致差分方程組,為湍斑及湍流相干結(jié)構(gòu)的研究提供了有效的數(shù)值方法。
Important missing aspects are : turbulent flow , numerical discretization techniques specially the relevant and difficult topic of numerical treatment of advection and related numerical methods of solution , variable property fluids , boundary layers , stability , etc . rather , it focuses on more primitive and fundamental issues of numerical treatment of advective equation and proper formulation of initial boundary value ( ib vp ) . numerical problems associated with advective dominated transport include spurious oscillation , numerical dispersion , peak clipping , and grid oriention . however , the key of numerical solution of three - dimensional advective problem is searching for a high - precision interpolating function , which can keep the computational stability and low damping 3 、針對三維純對流方程提出了實(shí)用的擬協(xié)調(diào)單元模式,并與線性插值模式和協(xié)調(diào)單元模式比較后表明,在物理量大梯度變化的情況下,線性插值模式會(huì)產(chǎn)生較大的數(shù)值阻尼,導(dǎo)致解的失真;協(xié)調(diào)單元模式具有極高的計(jì)算精度和良好的計(jì)算穩(wěn)定性,還可較好地克服數(shù)值阻尼,但由于計(jì)及物理量的二階導(dǎo)數(shù)項(xiàng),計(jì)算工作量大,邊界條件給定尚存在一定的困難;而擬協(xié)調(diào)單元模式不僅具有協(xié)調(diào)單元模式計(jì)算精度高的優(yōu)點(diǎn),還避免了物理量的二階導(dǎo)數(shù)項(xiàng),可大大地減少計(jì)算工作量。